
Published by the IEEE Computer Society	 0272-1716/12/$31.00 © 2012 IEEE	 IEEE Computer Graphics and Applications� 39

Biomedical Applications

Visualizing Cells and  
Humans in 3D
Biomedical Image Analysis at Nanometer and Meter Scales

Terry S. Yoo, Donald Bliss, Bradley C. Lowekamp, and David T. Chen ■ US National Library of Medicine

Gavin E. Murphy ■ Indiana University Bloomington

Kedar Narayan, Lisa M. Hartnell, Thao Do, and Sriram Subramaniam ■ US National Cancer Institute

More than 15 years ago, the Visible Hu-
man Project (VHP) announced the most 
detailed study of human anatomy ever 

attempted.1 The study employed emerging technol-
ogy in digital photography and cryosectioning, a 
destructive imaging technique that achieves pixel 
resolutions on the order of 300 microns across sub-
jects nearly 2 meters long. The resulting datasets 
exceeded 17 Gbytes and represented a landmark in 
the medical sciences.

Today, the High Performance Computing and 
Communications Office and the Audiovisual Pro-
gram Development Branch of the US National 
Library of Medicine and the Laboratory of Cell 
Biology at the US National Cancer Institute are 
teaming up to investigate biomedical sciences at 
nanometer scales using ion-abrasion scanning 
electron microscopy (IA-SEM). IA-SEM is an 
emerging technology for 3D imaging of whole cells 
and tissues at resolutions in the 10-nm range.2,3

Despite the difference in subject and scale across 
the subject matter, the methods for analyzing and 
modeling them are remarkably similar. They are 
derived from image-processing, computer vision, 
and computer graphics techniques. Our process 
reduces large data to a manageable computational 
model suitable for quantitative analysis while pro-
moting abstract concepts of shape, structure, and 
function. Moreover, we are employing medical il-
lustration, visualization, and rapid prototyping to 
inform and inspire the biomedical sciences. By 

combining graphics and biology, we are imaging 
biologically relevant objects at the nano and macro 
scales to improve public health through research.

Scope and Scale
There are several ways to describe the resolution of 
a volumetric digital image. Resolution often relates 
to the number of pixels of an im-
age. Field of view usually refers to 
the size or dimensions an image 
spans in physical space. Regard-
ing data acquisition, other con-
cerns arise. For this article, we’ll 
call the subject matter’s field of 
view the image’s outer scale and 
the minimum resolvable feature 
size the inner scale.

Inner scale is distinct from 
pixel resolution (or voxel resolu-
tion in 3D) because it’s derived 
from the process or technology 
used in data acquisition. Factors 
influencing the inner scale of 
3D data include the point-spread 
function of the imaging system, the sensitivity of 
the detector and its susceptibility to noise, and ar-
tifacts and variations of the subject material. The 
size of the spot that the electron beam creates, the 
precision of the microscope’s objective lens, and 
even asymmetries in the data collection affect in-
ner scale. Even if a microscope can generate an 

Researchers have analyzed and 
presented volume data from 
the Visible Human Project and 
data from 3D ion-abrasion 
scanning electron microscopy. 
Despite the two datasets’ 
difference in subject and scale, 
the methods for analyzing and 
modeling them are remarkably 
similar. They are derived from 
image-processing, computer 
vision, and computer graphics 
techniques.
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image with pixel dimensions measured in nano-
meters, the inner scale of the image will be mea-
sured in microns if the focus of the objective lens 
or the indistinct glow of fluorescent proteins only 
allows the capture of micron-sized features. The 
drive for more magnification is limited by phys-
ics, optics, scanning speed, and the ability to focus 
photons or electrons and ions.

The outer scale of an image is usually limited 
by the extent and cost of the detector and is often 
in direct opposition to improvements in the cor-
responding inner scale. Decreasing a microscope’s 
objective power or zooming out with a camera’s 
optics will increase the outer scale at the expense 
of the inner scale. Regarding these trade-offs, bio-
medical sciences have a driving need to work at the 
scope of whole organs, the relationships between 
entire cells, or whole-body images. Simultaneously, 
they need to see these entire subjects at the highest-
possible magnification.

Modern microscopy is rapidly adopting digital 

methods to adapt and combat these trade-offs. Digi-
tal registration enables large composite mosaic micro-
graphs from multiple images, effectively increasing 
the outer scale without sacrificing magnification.4

Block-faced imaging microscopy methods record 
entire cell populations while capturing extremely 
fine details.5 These methods generate large data
sets, requiring software developers to analyze data 
that often will not fit in main memory. Our inves-
tigations with the VHP, its large datasets, and its 
associated software development programs helped 
us tackle microscopy problems with minor adapta-
tion of our techniques. We compare the applica-
tion of our methods to whole human subjects with 
an outer scale of 2 meters to those same methods 
applied to voxel data of single cells with an inner 
scale of 15 nm.

Common Ground in the Digital Domain
The two case studies in this article (see the sidebars) 
represent some of the most advanced 3D-imaging 

  

Under the Visible Human Project,1 the University of 
Colorado Health Sciences Center created a custom 

cryomacrotome using a specially constructed 14-inch di-
ameter disk with 20 hardened teeth around its perimeter. 
The milling blade remained in a fixed position operating 
at 300 rotations per minute, and the subject block was 
moved under the cutting head and elevated between slices. 
Figure A gives an overview of this process.

The researchers carefully selected two cadavers from 
human subjects who donated their bodies to science. 
Before milling or sectioning, they perfused the cadav-
ers with approximately 19 liters of formalin (a chemical 
fixative to arrest all latent biological activity). Later, they 
immobilized and eventually froze the subject. Because 

Case Study 1: The Scale of Mice and Men

Cadaver frozen in
colored gelatin

Milling and photography are repeated
to create a sequential stack of cross-sectional images.

Surface milled
in thin layers

Photos taken 
of each layer

Figure A. The Visual Human Project (VHP) data collection process. 

Researchers first froze and embedded cadavers in ice. They 

incrementally carved the resulting sample using a custom milling 

machine, exposing layer after layer of human anatomy. They 

photographed the freshly planed block face with submillimeter 

precision. They did not apply staining or perform digital tissue 

classification. The RGB values of the images reflect the fixed tissue’s 

natural colors. Researchers used these techniques to perform a 

comprehensive study of human anatomy on a male and female 

subject. They generated thousands of sequential digital images per 

subject that constitute a whole-body volume.
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approaches of biomedical subjects. Although these 
studies deal with vastly different scales, their in-
herent basis in milling and block-face imaging lead 
to similar computational approaches. The deform-
able biological subject matter creates similar needs 
for the samples to be fixed, immobilized, and em-
bedded before researchers can capture the data.

Preprocessing
The common theme of incremental slices for data 
capture causes cryosectioning and IA-SEM to 
have similar data-preprocessing requirements. The 
pixels of each slice are acquired simultaneously, 
but conditions between slices vary in small ways.

There are many factors that create variations in 
image position and color in cryosectioning. The 
cryomacrotome system (see the “Case Study 1” 
sidebar) has mechanical systems for carefully posi-
tioning the frozen blocks under the digital camera. 
However, it’s not feasible to precisely, accurately, 
and repeatedly stop a mass of ice exceeding 106 

kg within 100 microns during thousands of trials. 
Despite consistent dressing of the exposed surfaces 
with dry ice between milling, over the course of a 
day, the rising temperature of the cryomacrotome 
will affect the images’ color. Daily power and 
ambient-temperature fluctuations can also affect 
the digital detector’s sensitivity.

In IA-SEM, several factors can affect the align-
ment and exposure consistency of the captured 
digital images. When we are trying to achieve 
pixel resolutions of 3 to 6 nm, even slight changes 
in temperature affect the detector’s sensitivity or 
induce thermal drift, affecting spatial alignment.

Whether the source is a cryomacrotome or IA-
SEM, digital preprocessing has similar mathemat-
ics. Alignment in the yz- or xz-planes is seldom, if 
ever, required, but xy-registration of stacked slices 
is mandatory.

In the VHP data the research team placed fidu-
cial markers in the frozen gelatin to aid in align-
ment. With IA-SEM data, we use commercial and 

  

of the physical limitations of the sectioning apparatus, 
they partitioned the embedded subject into blocks no 
larger than 56 × 53 × 36 cm. They embedded each 
cadaver section in a matrix of 3 percent gelatin colored 
blue with food dye and transferred it to a freezer (−85°C) 
for at least 12 hours.

Using the custom cryomacrotome, the researchers in-
crementally milled each block section as slices at millimeter 
scales. They then imaged the resulting exposed surfaces 
with some of the most sophisticated digital photography 
equipment available. A Hasselblad 553 ELX camera body 
with a 2,048 × 2,048 × 14-bit Leaf camera back mounted 
with a Zeiss Distagon f4 50-mm lens set to f6.8 with a po-

larizing filter generated a field of view of 63.5 × 63.6 cm. 
An RGB color wheel created three color channels.

Ultimately, the male dataset comprises 1,878 slices 
of 2,048 × 1,216 voxels. Voxel resolutions are 1 mm and 
0.33 mm in the z-direction for the male and female data
sets, respectively, and 0.32 × 0.32 mm in the xy-plane. 
Figure B shows example renderings.

Reference
	 1.	 V. Spitzer et al., “The Visible Human Male: A Technical 

Report,” J. Am. Medical Informatics Assoc., vol. 3, no. 2, 

1996, pp. 118–130.

 

(1) (2) (3)

Figure B. VHP renderings. (1) Coronal views. (2) Volume renderings. (3) An axial-image close-up of the head. The VHP collected whole-body 

data of two human subjects, male and female, at millimeter resolutions using a custom cryomacrotome. The resulting datasets remain some of 

the most comprehensive studies of human anatomy today.
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open source software packages to align the image 
stacks. We manage brightness and intensity cor-
rection by analyzing the histogram of the image 
intensities and creating an algebraic correction 
based predominantly on the z-value of the slice. 
Another characteristic of both imaging modalities 
is that the imaging system dominates the point-
spread function in the xy-plane. In the z-direction, 
other factors such as electron or photon penetra-
tion create an asymmetric response along the z-
axis. Proper filtering, averaging, and denoising of 
such data should take this into account and will 
result in asymmetric, anisotropic methods.

Segmentation
Both modalities generate relatively large data vol-
umes. The size of these datasets overwhelms many 
image segmentation software packages. Often,  
research teams must therefore write custom soft-
ware to accommodate large 3D data. One exception 
to this is the Insight Segmentation and Registra-
tion Toolkit (ITK). Originally funded by a consor-
tium of US National Institutes of Health and other 
federal agencies, the software architecture of this 
open source, publicly available library was designed 
for streaming processing, permitting out-of-core 
data analysis. Researchers recently demonstrated 

Our multidisciplinary team has been developing new 
methods in high-resolution electron microscopy to cap-

ture volume datasets containing entire cells. In a process that 
corresponds broadly to the cryomacrotome, we use a system 
equipped with a gallium ion source for focused ion beam 
milling. We also use a field-emission-gun scanning elec-
tron microscope (SEM) with an in-lens secondary electron 
detector for imaging to incrementally acquire image stacks 
comprising 3D volumes of cellular samples. The focused ion 
beam is capable of milling and polishing with nanometer 
precision.1 Figure C gives an overview of this process.

Typically, we prepare cell samples of interest for imaging 
by adding a fixative buffer of glutaraldehyde in a sodium 
cacodylate solution, arresting all biological activity. After 
postfixing with 1 percent osmium tetroxide (OsO4) in a 0.1 
M (molar volume) sodium cacodylate buffer and stained 
with 0.5 percent uranyl acetate in a 0.1 M acetate buffer, 
we dehydrate the samples through graded ethyl alcohol 
followed by propylene oxide. Samples are then infiltrated 
overnight at room temperature with a 1:1 mixture of epoxy 
resin and propylene oxide and cured for 48 hours in an 
oven at 55°C. We trim the resulting samples into blocks 
with 2-mm surface areas.

Using the focused ion beam, we incrementally mill the 
sample blocks containing whole cells (with a typical interval 
between layers of 10 to 20 nanometers). We image the 
resulting exposed surfaces with the SEM directly from the 
face of the remaining block. Secondary electron SEM im-

Case Study 2: 3D Imaging at a Cellular Scale
  

Cutting and imaging steps repeat to create a sequential stack 
of cross-sectional images.

A scanning electron 
microscope records 
an image of the 
exposed surface.

The ion beam removes
a thin layer of the sample.

IA-SEM

Ion beam

+

Microphage infected with HIV-1 Cells embedded in resin

Figure C. Data capture with ion-abrasion scanning electron 

microscopy (IA-SEM). We prepare samples using techniques similar 

to those for transmission electron microscopy, embedding the fixed 

and dehydrated biological sample in an epoxy resin. An ion beam 

repeatedly mills or abrades and polishes a flat surface in the sample, 

exposing layer after layer of structure at a cellular level. A scanning 

electron microscope acquires images of the exposed faces of the 

sample block. Each pass of the ion beam can remove layers as thin 

as 10 nanometers, with pixel dimensions as small as 3 to 6 nm.
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and made publicly available the source code for fil-
tering large datasets, including I/O support of the 
VTK (Visualization Toolkit) and MRC (Medical Re-
search Council) microscopy file formats.6

Figure 1 illustrates how we applied ITK meth-
ods to IA-SEM data. The sample is an HIV-infected 
monocyte-derived macrophage, part of the im-
mune system. Macrophages can harbor HIV, inad-
vertently acting as reservoirs of the infection. We 
analyzed the captured data to evaluate and observe 
the disposition of HIV in the infected cells.7

Analysis of a large dataset involves two essential 
requirements. First, you must understand the reso-

lution and scale needed to accomplish the task. 
Second, you must use the simplest algorithms 
available to accomplish the task, because large 
data presents a computational burden that can 
make an approach unusable.

To preprocess the macrophages, we used a mod-
ified curvature diffusion equation to align and 
denoise the data.8 We observed that the cells’ in-
teriors were heterogeneous but that the exterior 
resin had a constant intensity (except for imag-
ing artifacts). Additionally, the cells contained 
enhanced boundaries in many places but weaker 
ones in others.

For segmentation, we first applied, with manu-
ally selected seeds, threshold-based region grow-
ing. As we expected for this simplistic approach, 
the chosen threshold either leaked into the cell 
or undersegmented the region. We used the un-
dersegmented region as an initial condition for a 
level-set method containing an expansion term 
and a mean curvature penalty.9 Owing to the 
observed strong edges, a sigmoid function of the 
gradient magnitude drove the expansion term. 
The complement of the resulting level set con-
tained the cell and the virus.

Although viruses have varying sizes and appear-
ances based on their maturity, they are still es-
sentially spherical. The Hough transform detects 
sphere-like objects by having feature points “vote” 
in a 4D parametric space. The naïve implementa-
tion of the transform is expensive in both com-
putation and memory. To reduce the memory 
required, we reduced the radius dimension in the 
parametric space by maintaining the average ra-
dius for a given center. To reduce the computa-
tional expense, we selected quality points, which 
lie on the optimal edge, on the basis of John Can-
ny’s maximum gradient magnitude criterion.

Finally, we manually segmented the interior viral 
channels and pockets. We used binary operations 
and morphology to exclude the virus channels and 
the viruses from the level-set mask, as well as to 
exclude false-positive virus detections in the cell.

We found HIV congregating in pockets through-
out the cell. Figures 1c and 1d compare the compart-
ments where HIV is sequestered in the macrophage. 
In the 2D view, the compartments appear to be 
bubble-like vesicles, whereas the 3D view shows 
that the compartments are physically contiguous 
with the extracellular environment.

Visualization and 3D Printing
Although algorithms and techniques for rendering 
volume datasets are straightforward today, present-
ing large data remains a computational challenge 

ages are typically recorded at accelerating volt-
ages of 1 to 3 kV, 10,000× magnification, and 
a beam current of 68 to 270 pA (picoamperes) 
in the immersion lens mode. Depending on the 
sample, each dataset can contain a stack of as 
many as 1,000 images. Figure D shows an ex-
ample rendering.

Reference
	 1.	 J.A. Heymann et al., “Site-Specific 3D Imaging of 

Cells and Tissues with a Dual Beam Microscope,” J. 

Structural Biology, vol. 155, no. 1, 2006, pp. 63–73.

  
  

Figure D. A rendering of a human melanoma cancer cell 

from data acquired using IA-SEM. This view clearly shows 

the relative placement of organelles such as mitochondria 

(red) and the endoplasmic reticulum (yellow). Individual 

voxel dimensions are 6 nm in the xy direction and 20 nm in 

the z direction.
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requiring complex data management and software 
design. We use a variety of techniques to render 
our data. Figure 2 shows feedback loops in our 
data flow among segmentation, visualization, and 
quantitative measurement.

A relatively new addition among our research 
tools is a 3D-printing, rapid-prototyping, layered 
manufacturing system that renders full-color ink-
jet representations as plaster 3D models.10 (Fig-
ure 3 shows our first attempt to apply this tool 
to biomedicine using VHP data.) We directed this 
technology toward high-resolution electron mi-
croscopy. In one study, the team examined the 
mechanisms by which HIV virions are transferred 
from dendritic cells to T cells during cell-to-cell 
contact. Two-dimensional transmission electron 
microscopy studies show that T cells are encircled 
by cytoplasmic processes emanating from the 
dendritic cell. However, 3D microscopy shows 
that, rather than form a lasso-like structure, the 
dendritic cells create cradle-like structures out of 
sheets or ruffles of membrane that embrace the 

T cell. These structures contain and perhaps con-
trol the local chemical and biological environment 
around the T cell, accelerating pathogen transfer 
between them.

When we first considered how to portray this 
observation, we reconstructed the data from IA-
SEM as a solid model in a series of four slabs. We 
segmented the T cells and dendritic cells from the 
surrounding serum or background using level sets 
and mathematical morphology. We colored the T 
cells red or pink to help discriminate the two cell 
populations. We converted the resulting data into 
textured isosurfaces and printed them with the 3D 
printer. This provided valuable insights into the 
spatial arrangement of membranes in the cell-to-
cell contact region (see Figure 4).11

Quantitative Measurement
As we traverse the image analysis pipeline, we 
progressively reduce the size of the data stream 
while building meaningful abstractions about the 
information it contains. A continuing goal is to 

Viral
channel

Section through macrophageMacrophage surface

Membrane wave

Cut plane

Filopodia?

Vesicle?

(a)

(b)

(c)

(d)

Figure 1. Results from ion-abrasion scanning electron microscopy (IA-SEM) of HIV-infected monocyte-derived macrophages. 
(a) 2D imaging can lead to the erroneous conclusion that the structures of interest are filopodia (thread-like filaments of 
membrane). (b) 3D imaging reveals that these structures are membrane waves or walls. (c) 2D imaging suggests that HIV virions 
are sequestered in vesicles or bubbles in the cell. (d) 3D imaging reveals that the structures are not vesicles but are pockets that 
have complex tunnels and channels that communicate with the environment outside the cell.
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enable quantitative studies about the shape, size, 
geometry, and structure of the specimen. This 
step beyond qualitative observation of biological 
phenomena promotes a range of science that can 
employ and build on established tools of statistics 
and mathematics. We must derive metrics and 
measurements from our data that can leverage 
these mature disciplines.

Figure 5 illustrates quantitative measurement in 
our research. Methylmalonic acidemia (MMA) is 
a lethal congenital dysfunctional metabolic condi-
tion. Researchers have noted that mitochondria, 
organelles responsible for cell respiration, are un-
usually large and distorted in subjects afflicted 
with MMA. In a comparative study, we collected 
3D data volumes from normal and diseased tissue 
samples using IA-SEM. Using our data analysis ap-
proach, we segmented and analyzed the mitochon-
dria in both populations.12

We took liver cells from normal and MMA-
afflicted mice. We prepared the tissue and col-
lected volume images with IA-SEM. We manually 
segmented the mitochondria from both sample 
populations and discarded partial organelles. Then 
we analyzed the remaining mitochondria and com-
puted the Gaussian curvature across the membrane.

The distorted shapes of the MMA-afflicted mi-
tochondria are visually apparent, whereas the 
normal mitochondria appear as smaller, simpler 
spheroids. A spheroid has only positive Gaussian 
curvature, while bifurcating shapes have relatively 
large hyperbolic patches with negative Gaussian 
curvature. To quantify the extent of the distor-
tions using a metric that is invariant to changes 
in size, we measured the percentage of positive 
Gaussian curvature for each mitochondrion. We 
plotted this value for both populations; the results 
suggest that mitochondrial shape is possibly an 
early indicator of this disease (see Figure 6).

Discovery in Three Dimensions
The technologies for generating 3D data of intracel-
lular subject material have emerged only in recent 
years. The case for both capturing data and model-
ing information in three dimensions (and higher-
dimensional spaces) is compelling. Life exists in 
three dimensions, and understanding the spatial 
relationships among the features and phenomena 
requires modeling and analysis beyond 2D space.

Figure 1 demonstrates this idea. Filopodia are 
filamentous or thread-like extrusions of the cell 
membrane that macrophages can use to snare and 
envelope viruses and other pathogens as a defensive 
part of the immune system. Our IA-SEM studies 
have revealed new insights into the membrane or-

ganization on the surfaces of macrophages. Fea-
tures that might be considered filament-like in 
two xy dimensions actually have broad extent in 
the z dimension, creating wall-like structures 
rather than finger-like projections. These massive 
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Figure 2. The shared data-processing pathway for 
cryosectioning and IA-SEM. The overall trend from 
data collection to generated models is to increase 
levels of abstraction while reducing data from 
Gbyte volumes to Kbyte mathematical, statistical, or 
computational models.
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microscopic wave-like projections could be far more 
efficient than filopodia at particle capture. These 
membrane extensions likely correspond to the 
“ruffles” or “veils” we observed through SEM of the 
macrophage surface.3

Focusing on Presentation
Volume data created with IA-SEM is so dense with 
detail that figure creation begins with deciding and 
planning the focus. Instead of including layers of 
beautiful, rich data, each figure’s core message dic-
tates what will be omitted for clarity’s sake. We can 
omit structures or render them transparently while 
resegmenting other crucial details with greater care.

We translate membranes, organelles, or other 
structures into polygonal models. We then ma-
nipulate them with 3D software such as Autodesk 

3D Studio Max or Maya. We often use additional 
rendering plug-ins (such as SplutterFish Brazil or 
Autodesk Mental Ray) for specific effects to create 
a visual hierarchy of importance.

To further focus the view, we employ various 
effects. Color creates emphasis. Realistic shadows 
add a layer of realism that helps viewers under-
stand compound overlapping forms. Materials 
such as translucent ray-traced glass show both a 
surface and what is obscured beneath. Radiosity 
helps mimic real-world lighting, enabling view-
ers to more easily perceive and comprehend com-
plex organic shapes. Finally, subsurface scattering 
allows suggestions of volumes such as the thin 
structures of membranous folds. Each additional 
effect clarifies the message while reducing the 
clutter of nonrelated information.

(a) (b)

Figure 3. Applying 3D printing to our research. (a) We created this printout of the Visual Human Project male 
head. (b) Commercial printing software creates raster scans from polygonal models, generating incremental 
layers printed with inkjets to build solid models from plaster, ink, and liquid binder.

(a) (b) (c)

Figure 4. Cell-to-cell contact between dendritic cells and T cells. (a) A 2D transmission electron microscopy image of a T cell 
surrounded by dendritic cells. (b) A 3D print of IA-SEM data. T cells are red; we re-created the volume as slabs. We used level sets 
and mathematical morphology to segment the cell surfaces. (c) A rendering of the cradle-like structures. We digitally removed 
two T cells in the foreground to reveal the complex underlying structure.
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We’re only beginning to leverage the capabili-
ties of our current technology to explore the 

life sciences at nanometer scales. With this drive to 
see smaller structures, we face problems of increas-
ing noise and artifacts in the signal as we acceler-
ate the speed of data acquisition; quantum physics 
events are also a significant consideration. More-
over, the increasing sizes of collected datasets pose 
computational questions that must be answered.

Other challenges include merging different im-
aging modalities. Radiology researchers routinely 
fuse positron-emission-tomography data, which is 
noisy, relatively low-resolution data on physiology, 
with higher-resolution x-ray computed-tomography 
data, which has good anatomical content, to le-
verage each modality’s best capabilities. Likewise, 

54.0–62.5 62.5–75.0 75.0–87.5

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

Re
la

tiv
e 

fr
eq

ue
nc

y

Positive Gaussian curvature (%)

87.5–100

Normal

MMA

Figure 6. Plotting the percentage of positive Gaussian curvature yields a 
size-invariant metric that implies two distinct populations. This suggests 
that mitochondrial shape is possibly an early indicator of MMA.
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Figure 5. Comparing the mitochondrial geometry of normal tissue (left column) and tissue from a subject 
with methylmalonic acidemia (MMA; right column). (a) 3D IA-SEM of liver cells. (b) Manual segmentation 
and classification of mitochondria and lipid vacuoles. (c) Shape analysis of Gaussian curvature across the 
mitochondria’s surface. (Normal mitochondria are predominantly elliptical; MMA-affected mitochondria  
are distorted.)
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correlative imaging combines fluorescent confocal 
and two-photon microscopy with IA-SEM. On the 
basis of our successes in repurposing software, 
we hope to adapt existing methods developed 
for 3D fusion of multimodal radiological data 
to microscopy. The goal in correlative imaging is 
multimodal registration of biochemical informa-
tion from relatively noisy, low-resolution confocal 
data with structural information from IA-SEM at 
nanometer scales.

Discovery today in science and medicine relies 
on computing and other advances in technol-
ogy. Disciplines such as radiology, microscopy, 
and even astronomy are possible only through a 
blend of the technologies for data capture and data 
analysis. Before now, experts in gross anatomy and 
microbiologists had little common ground. Today, 
however, as computer scientists are joining multi
disciplinary research teams, they are linked by 
software and supporting data analysis practices.

The evolution of whole-body imaging and 
whole-cell high-resolution electron microscopy 
projects exposed many shared software concerns 
in each of them, despite a dramatic difference in 
the posed problems’ physical scales. Ultimately, 
the shared process of volume image analysis is 
one of data reduction, decreasing the problem’s 
dimensionality into quantifiable metrics that lead 
to rigorous scientific study. Early investment in 
segmentation and registration algorithms as well 
as a strong software process will hopefully enable 
us to continue to rapidly adapt our current meth-
ods in radiology to enable new discoveries inside 
individual cells.�
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Acoustic Simulation Specialist  
[Req #17070110]
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element modeling using Pspice or Matlab); dynamic transducer design (material property analysis, magnets, electrical coils, 
diaphragm foils, mass-spring-damped systems, specification, testing); transducer prototyping machines; audio testing of acoustic 
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